您所在的位置:首页 » 吉林cnas软件测试 优惠报价 深圳艾策信息科技供应

吉林cnas软件测试 优惠报价 深圳艾策信息科技供应

上传时间:2025-04-11 浏览次数:
文章摘要:    降低成本对每个阶段都进行测试,包括文档,便于控制项目过程缺点依赖文档,没有文档的项目无法使用,复杂度很高,实践需要很强的管理H模型把测试活动完全**出来,将测试准备和测试执行体现出来

    降低成本对每个阶段都进行测试,包括文档,便于控制项目过程缺点依赖文档,没有文档的项目无法使用,复杂度很高,实践需要很强的管理H模型把测试活动完全**出来,将测试准备和测试执行体现出来测试准备-测试执行就绪点其他流程----------设计等v模型适用于中小企业需求在开始必须明确,不适用变更需求w模型适用于中大企业包括文档也需要测试(需求分析文档概要设计文档详细设计文档代码文档)测试和开发同步进行H模型对公司参与人员技能和沟通要求高测试阶段单元测试-集成测试-系统测试-验证测试是否覆盖代码白盒测试-黑盒测试-灰盒测试是否运行静态测试-动态测试测试手段人工测试-自动化测试其他测试回归测试-冒*测试功能测试一般功能测试-界面测试-易用性测试-安装测试-兼容性测试性能测试稳定性测试-负载测试-压力测试-时间性能-空间性能负载测试确定在各种工作负载下,系统各项指标变化情况压力测试:通过确定一个系统的刚好不能接受的性能点。获得系统能够提供的**大服务级别测试用例为特定的目的而设计的一组测试输入,执行条件和预期结果,以便测试是否满足某个特定需求。通过大量的测试用例来检测软件的运行效果,它是指导测试工作进行的依据。兼容性测试涵盖35款设备,通过率91.4%。吉林cnas软件测试

吉林cnas软件测试,测评

    综合上面的分析可以看出,恶意软件的格式信息和良性软件是有很多差异性的,以可执行文件的格式信息作为特征,是识别已知和未知恶意软件的可行方法。对每个样本进行格式结构解析,提取**每个样本实施例件的格式结构信息,可执行文件的格式规范都由操作系统厂商给出,按照操作系统厂商给出的格式规范提取即可。pe文件的格式结构有许多属性,但大多数属性无法区分恶意软件和良性软件,经过深入分析pe文件的格式结构属性,提取了可能区分恶意软件和良性软件的136个格式结构属性,如表2所示。表2可能区分恶意软件和良性软件的pe格式结构属性特征描述数量(个)引用dll的总数1引用api的总数1导出表中符号的总数1重定位节的项目总数,连续的几个字节可能是完成特定功能的一段代码,或者是可执行文件的结构信息,也可能是某个恶意软件中特有的字节码序列。pe文件可表示为字节码序列,恶意软件可能存在一些共有的字节码子序列模式,研究人员直觉上认为一些字节码子序列在恶意软件可能以较高频率出现,且这些字节码序列和良性软件字节码序列存在明显差异。可执行文件通常是二进制文件,需要把二进制文件转换为十六进制的文本实施例件,就得到可执行文件的十六进制字节码序列。吉林第三方软件检测机构数据安全与合规:艾策科技的最佳实践。

吉林cnas软件测试,测评

    此外格式结构信息具有明显的语义信息,但基于格式结构信息的检测方法没有提取决定软件行为的代码节和数据节信息作为特征。某一种类型的特征都从不同的视角反映刻画了可执行文件的一些性质,字节码n-grams、dll和api信息、格式结构信息都部分捕捉到了恶意软件和良性软件间的可区分信息,但都存在着一定的局限性,不能充分、综合、整体的表示可执行文件的本质,使得检测结果准确率不高、可靠性低、泛化性和鲁棒性不佳。此外,恶意软件通常伪造出和良性软件相似的特征,逃避反**软件的检测。技术实现要素:本发明实施例的目的在于提供一种基于多模态深度学习的恶意软件检测方法,以解决现有采用二进制可执行文件的单一特征类型进行恶意软件检测的检测方法检测准确率不高、检测可靠性低、泛化性和鲁棒性不佳的问题,以及其难以检测出伪造良性软件特征的恶意软件的问题。本发明实施例所采用的技术方案是,基于多模态深度学习的恶意软件检测方法,按照以下步骤进行:步骤s1、提取软件样本的二进制可执行文件的dll和api信息、pe格式结构信息以及字节码n-grams的特征表示,生成软件样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图。

    在数字化转型加速的,软件检测公司已成为保障各行业信息化系统稳定运行的力量。深圳艾策信息科技有限公司作为国内软件检测公司领域的企业,始终以技术创新为驱动力,深耕电力能源、科研教育、政企单位、研发科技及医疗机构等垂直场景,为客户提供从需求分析到运维优化的全链条质量保障服务。以专业能力筑牢行业壁垒作为专注于软件检测的技术型企业,艾策科技通过AI驱动的智能检测平台,实现了测试流程的自动化、化与智能化。其产品——软件检测系统,整合漏洞扫描、压力测试、合规性验证等20余项功能模块,可快速定位代码缺陷、性能瓶颈及安全风险,帮助客户将软件故障率降低60%以上。针对电力能源行业,艾策科技开发了电网调度系统专项检测方案,成功保障某省级电力公司百万级用户数据安全;在科研教育领域,其实验室管理软件检测服务覆盖全国50余所高校,助力科研数据存储与分析的合规性升级。此外,公司为政企单位政务云平台、研发科技企业创新产品、医疗机构智慧医疗系统提供的定制化检测服务,均获得客户高度认可。差异化服务塑造行业作为软件检测公司,艾策科技突破传统检测模式,推出“检测+培训+咨询”一体化服务体系。通过定期发布行业安全白皮书、举办技术研讨会。对比分析显示资源占用率高于同类产品均值26%。

吉林cnas软件测试,测评

    后端融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图13所示,规范化后的混淆矩阵如图14所示。后端融合模型的roc曲线如图15所示,其显示后端融合模型的auc值为。(6)中间融合中间融合的架构如图16所示,中间融合方式用深度神经网络从三种模态的特征分别抽取高等特征表示,然后合并学习得到的特征表示,再作为下一个深度神经网络的输入训练模型,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器(optimizer)采用的是adagrad,batch_size是40。图16中,用于抽取dll和api信息特征视图的深度神经网络包含3个隐含层,其***个隐含层的神经元个数是128,第二个隐含层的神经元个数是64,第三个隐含层的神经元个数是32,且3个隐含层中间间隔设置有dropout层。用于抽取格式信息特征视图的深度神经网络包含2个隐含层,其***个隐含层的神经元个数是64,其第二个隐含层的神经元个数是32,且2个隐含层中间设置有dropout层。用于抽取字节码n-grams特征视图的深度神经网络包含4个隐含层,其***个隐含层的神经元个数是512,第二个隐含层的神经元个数是384,第三个隐含层的神经元个数是256,第四个隐含层的神经元个数是125。隐私合规检测确认用户数据加密符合GDPR标准要求。呼和浩特软件检测实验室

艾策检测团队采用多模态传感器融合技术,构建智能工厂设备状态健康监测体系。吉林cnas软件测试

    之所以被称为黑盒测试是因为可以将被测程序看成是一个无法打开的黑盒,而工作人员在不软件测试方法考虑任何程序内部结构和特性的条件下,根据需求规格说明书设计测试实例,并检查程序的功能是否能够按照规范说明准确无误的运行。其主要是对软件界面和软件功能进行测试。对于黑盒测试行为必须加以量化才能够有效的保证软件的质量。[5](2)白盒测试。其与黑盒测试不同,它主要是借助程序内部的逻辑和相关信息,通过检测内部动作是否按照设计规格说明书的设定进行,检查每一条通路能否正常工作。白盒测试是从程序结构方面出发对测试用例进行设计。其主要用于检查各个逻辑结构是否合理,对应的模块**路径是否正常以及内部结构是否有效。常用的白盒测试法有控制流分析、数据流分析、路径分析、程序变异等,其中逻辑覆盖法是主要的测试方法。[5](3)灰盒测试。灰盒测试则介于黑盒测试和白盒测试之间。灰盒测试除了重视输出相对于出入的正确性,也看重其内部表现。但是它不可能像白盒测试那样详细和完整。它只是简单的靠一些象征性的现象或标志来判断其内部的运行情况,因此在内部结果出现错误,但输出结果正确的情况下可以采取灰盒测试方法。因为在此情况下灰盒比白盒**。吉林cnas软件测试

深圳艾策信息科技有限公司
联系人:邓琳
咨询电话:0755-18098929
咨询手机:18098929458
咨询邮箱:9681661@qq.com
公司地址:深圳市南山区粤海街道高新区社区白石路3609号深圳湾科技生态园二区9栋A708

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。

图片新闻

  • 暂无信息!